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1 Motivation - classification of reductive algebraic groups

First we’ll just talk about some motivation for discussing pinnings, which is the classification
of reductive algebraic groups. Fix a field k.

Definition 1.1. An algebraic k-group is a group G = G(k) which also an algebraic variety,
such that multiplication and inversion are regular maps. (This is a more classical viewpoint,
where we conflate a group scheme with its group of k-points.) As it is a variety, it is defined
by polynomial equations with coefficients in k, so we can also speak of G(L) for any field
extension L/k, where G(L) is the group of solutions in L.

Example 1.2. Ga(k),Gm(k),GLn(k), SLn(k) are algebraic k-groups.

Definition 1.3. Let k be an algebraic closure. An algebraic torus is an algebraic k-group
T (k) such that T (k) is isomorphic to a product of copies of Gm(k). T (k) is a split torus if
T (k) is isomorphic to a product of copies of Gm(k).

Example 1.4. The diagonal subgroup of GLn(k) or of SLn(k) is a split torus.

Definition 1.5. Let U be an algebraic k-group. U is unipotent if it is isomorphic to a
subgroup of upper triangular matrices in GLn(k) with 1’s along the diagonal.

Definition 1.6. Let G be an algebraic k-group. G is reductive if every smooth connected
unipotent normal subgroup of G is trivial. This hypothesis won’t be directly relevant for
anything in this talk, so you can just forget about it and think of ”reductive” as a synonym
for ”nice.”

Example 1.7. Gm(k), SLn(k),GLn(k) are all reductive. Ga(k) is not reductive, since it is
unipotent.

Definition 1.8. Let G be a reductive k-group. From general theory, we know that G
contains a torus. Let T ⊂ G be a maximal torus (with respect to inclusion). G is split if T
is a split torus.

Theorem 1.9 (Classification of split reductive groups). Let k be a field. Split reductive
k-groups are determined by their root data, in the sense that there is an equivalence of
categories

{split reductive k-groups} ' {root data}

Remark 1.10. The theorem extends to non-split reductive groups, in the sense that every
non-split group is a twisted form of a split group. So a non-split group is determined by its
associated split group, along with some group cohomology data.

Remark 1.11. The correspodence is roughly as follows. Take a group G with split maximal
torus T . G has an associated Lie algebra g, the tangent space at the identity. This Lie
algebra has an associated root system Φ. This Φ is the primary piece of information for
a root datum. The root data also includes the character group X∗(T ) = Hom(T,Gm),
cocharacter group X∗(T ) = Hom(Gm, T ), and a bilinear pairing X∗(T )×X∗(T )→ Z.
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Definition 1.12. Let G be a split reductive k-group, with split maximal torus T and as-
sociated root system is Φ ⊂ X∗(T ) = Hom(T,Gm). A pinning of G consists of, for each
α ∈ Φ, an embedding

Xα : Ga(k)→ G

called a pinning map, such that for all t ∈ T ,

t ·Xα(v) · t−1 = Xα(α(t)v)

and that G is generated (as a group) by T along with the images of all of the Xα and T .
What does this mean? Well since α ∈ Φ = Hom(T,Gm), α is a group homomorphism

T → k×. So this equation is saying that when we conjugate the image of Xα by an element
of the torus T , we land back in the image of Xα, and furthermore all that changed is that
we multiply our input v ∈ k by α(t) ∈ k×.

Why are pinnings important? As Milne says, “the pinning rigidifies the group.”

Theorem 1.13. Let G be a split reductive k-group with a pinning. The only automorphism
of G which respects the pinning is the identity map. More precisely, if σ is an automorphism
of G such that the following diagram commutes for all α, then σ = Id.

G G

Ga(k)

σ

Xα Xα

According to Milne, Grothendieck used the following analogy to talk about the structure
theory of algebraic groups. An algebraic group is like a butterfly. The body of the butterfly
is the maximal torus. The wings are two opposite Borel subgroups. And the pins are the
pinning maps.
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2 Pinning of GL2

Let G = GL2(k).
GL2(k) = {X ∈ M2(k) : detX 6= 0}

Let T ⊂ GL2(k) be the diagonal subgroup.

T =

{(
t1

t2

)
: ti ∈ k×

}
Let χi : T → k× be the map which picks off the ith diagonal entry. So

χi(diag(t1, t2)) = ti

The character group X∗(T ) = Hom(T, k×) is free abelian of rank 2, with basis χ1, χ2. Let

α12 = χ1 − χ2 α12(diag(t1, t2)) = t1t
−1
2

and let α21 = χ2 − χ1 = −α12. The root system Φ associated to GL2(k) is

Φ = {±α12} = {α12, α21}

For those in the know, this is the root system of type A1. Now we have the necessary setup
to talk about pinning maps. They are

Xα12 : Ga(k)→ GL2(k) u 7→
(

1 u
1

)
Xα21 : Ga(k)→ GL2(k) u 7→

(
1
u 1

)
These maps have several important properties. First, they are injective group homomor-
phisms. That is,

Xα12(u+ v) = Xα12(u) ·Xα12(v)

and similarly for Xα21 . Secondly and more importantly, they interact in a favorable way
with the conjugation action of the torus T . We can let GL2(k) act on itself by conjugation,
and then just restrict the action to T (k), so we’re thinking of T (k) acting on GL2(k) by
conjugation.

T ×GL2(k)→ GL2(k) t ·X = tXt−1

What happens when T (k) acts on Uα, the image of Xα? Something very nice. Let t =
diag(t1, t2) and act on Xα12(u).

tXα12(u)t−1 =

(
t1

t2

)(
1 u

1

)(
t−1
1

t2

)
=

(
1 t1t

−1
2 u
1

)
= Xα12

(
t1t
−1
2 u
)

= Xα12(α12(t)u)
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The same sort of thing happens with Xα21 .

tXα21(u)t−1 = Xα21 (α21(t)u)

Note also that GL2(k) is generated by the images of Xα12 , Xα21 , along with the diagonal
torus T . So we have described a pinning of GL2(k).

Remark 2.1. Let’s return to the butterfly diagram. The body is the diagonal torus T . The
wings are the upper and lower triangular subgroups, respectively. And we have only the two
pinning maps, Xα12 and Xα21 .

3 Pinning of GLn

Now let’s generalize to G = GLn. Again, let T ⊂ G be the diagonal subgroup, and let
χi : T → k× be the character which picks off the ith entry. Now the character group
X∗(T ) = Hom(T, k×) is free abelian of rank n, with basis χ1, . . . , χn. For i 6= j, define

αij = χi − χj : T → k× αij(t) = χi(t)χj(t)
−1 = tit

−1
j

where t = diag(t1, . . . , tn) ∈ T . Now the associated root system is type An−1.

Φ = {αij : 1 ≤ i, j ≤ n, i 6= j} ⊂ Hom(T, k×)

And now we can define our pinning maps. For α ∈ Φ, we have maps Xα = Xαij : k → SL3(k),
which take u ∈ k to the matrix with 1’s along the diagonal, u in the ijth position, and zeroes
elsewhere. This matrix is sometimes denoted eij(u) or euij. For example,

Xα13 : k → SLn(k) u 7→ eij(u)


1 u

1
1

. . .

1


These maps Xαij have the same two properties as in the previous example.

1. Xαij is an injective group homomorphism.

Xαij(u+ v) = Xαij(u) ·Xαij(v)

2. The diagonal torus T acts by conjugation on Xαij(u) by inserting αij(t). That is, if
t = diag(t1, . . . , tn), then

tXαij(u)t−1 = Xαij

(
αij(t)u

)
and GLn(k) is generated by all of the images Xαij along with T .
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3.1 Chevalley commutator formula

Now we can state third property which was not so visible in the case n = 2.

3. Let α, β ∈ Φ such that β 6= ±α and let u, v ∈ k. Then[
Xα(u), Xβ(v)

]
=

∏
i,j>0

iα+jβ∈Φ

Xiα+jβ(Nαβ
ij (u, v))

for some polynomial maps Nαβ
ij : k2 → k. 1

This is called the Chevalley commutator formula. Now for some observations about it.

(i) The formula only works when β 6= ±α, so when n = 2, the relation is vacuous, since
the only roots are ±α12.

(ii) Since the product is over positive integral linear combinations of α, β which lie in Φ,
the formula tells us that if there are no such linear combinations of α, β in Φ, then
product is trivial, so the commutator is trivial, or in other words, they commute. So
for example, if we take n = 4 and α12 = χ1 − χ2 and α34 = χ3 − χ4, there is no αij
which is a positive integral combination of these. So[

Xα12(u), Xα34(v)
]

= 1

Consequently, if we want to see an interesting example, a nontrivial commutator, we’ll need
to go to at least GL3(k) and choose some roots whose sum is also a root. So let’s work out
such an example. Fix n = 3. Choose α12 and α23. Then

α12 + α23 = χ1 − χ2 + χ2 − χ3 = χ1 − χ3 = α13

This is the only positive integral linear combination of α12, α23 which is a root. So the
commutator formula says that[

Xα12(u), Xα23(v)
]

= Xα12(N(u, v))

for some polynomial function N : k2 → k. If we do the big matrix calculation on the LHS,
we get [

Xα12(u), Xα23(v)
]

=

1 uv
1

1

 = Xα13(uv)

So N(u, v) = uv.

Remark 3.1. The Chevalley commutator formula looks intimidating and is not very succinct
or memorable. The way to think about it just that it says that the additive structure of the
root system Φ controls the multiplication structure of the group G.

1In particular, Nαβ
ij is homogeneous of degree i in the first variable and homogeneous of degree j in the

second variable.
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4 Pinning of Sp4

Let H be the following matrix.

H =


−1

1
−1

1

 ∈ GL4(k)

Now define the group

Sp4(k) =
{
X ∈ SL4(k) : X tHX = H

}
Again we let T ⊂ Sp4(k) be the subgroup of diagonal matrices. By a tedious matrix calcu-
lation, you can work out that T is not the full diagonal subgroup of SL4(k). Elements of T
have the form 

t1
t−1
1

t3
t−1
3


Again, let χi : T → k× be the character which picks off the ith diagonal entry. Then clearly
χ2 = −χ1 and χ4 = −χ3, so Hom(T,Gm) is free abelian of rank 2, with basis χ1, χ3. Now
our root system is

Φ = {±χi ± χj : i, j ∈ {1, 3}} = {±2χ1,±2χ3,±χ1 ± χ3}

which is the root system of type C2. And our pinning maps are

X2χ1(v) =


1 v

1
1

1

 X−2χ1(v) =


1
v 1

1
1



X2χ3(v) =


1

1
1 v

1

 X−2χ3(v) =


1

1
1
v 1



Xχ1−χ3(v) =


1 v

1
1

−v 1

 Xχ3−χ1(v) =


1

1 −v
v 1

1



Xχ1+χ3(v) =


1 v

1
v 1

1

 X−χ1−χ3(v) =


1

1 v
1

v 1


These have the same three properties.
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1. Each Xα is a group homomorphism.

Xα(u+ v) = Xα(u)Xα(v)

2. The diagonal subgroup T ⊂ Sp4(k) acts by conjugation on imXα by inserting α(t).

tXα(v)t−1 = Xα

(
α(t)v

)
3. (Chevalley commutator formula) For α, β ∈ Φ such that β 6= ±α and any u, v ∈ k,[

Xα(u), Xβ(v)
]

=
∏
i,j>0

iα+jβ∈Φ

Xiα+jβ

(
Nαβ
ij (u, v)

)

where Nαβ
ij : k2 → k is a polynomial map.

5 Generalization by Petrov and Stavrova

Nothing I’ve said about pinnings is that new, it’s all theory going back about 50 or 60 years.
But in recent years (2009) in work of Petrov and Stavrova, they develop a large generalization
of pinning theory. In their theorem,

1. k can be replaced by any commutative ring without idempotents.

2. The torus T is replaced by the more general notion of a Levi subgroup LP .

3. The previous two generalizations require a more complicated construction of the rela-
tive root system Φ, which can now be a nonreduced root system or not even a classical
root system at all.

4. The generalization of the equality

Xα(u+ v) = Xα(u)Xα(v)

has an extra factor on the RHS to account for when Φ is nonreduced.

5. The generalization of the equality

tXα(v)t−1 = Xα

(
α(t)v

)
also an extra factor on the RHS to account for when Φ is nonreduced. Also, α(t) may
instead be replaced by a linear map instead of just a scalar if t is in the Levi subgroup
but not inside a torus.

6. Perhaps surprisingly, the Chevalley commutator formula doesn’t really change at all
in the generalized version.
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